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Abstract. We first develop a method to obtain rigorous bounds for the Lyapounov exponent 
of products of a random matrix. When applied to a class of I D  problems, including 
localisation, it reproduces the correct scaling behaviour at the band edge and gives very 
good approximations of the prefactors. We then study analytically the successive moments 
of the distribution law for the trace of the random matrix product within the whole energy 
band. The band centre anomaly is found to affect the whole statistics of the problem and 
the exact anomalous value of the Lyapounov exponent is recovered through the replica trick. 

A direct approach to random matrix products through the calculation of the successive 
moments of their trace allows to obtain three different kinds of information. 

( i )  The second moment gives an upper bound on the Lyapounov exponent ( L E )  

of the problem. 
(ii) Analytical continuation of the moments towards q +. 0, when possible, gives the 

value of this LE.  

(iii) Finally, the whole set of moments allows us to discuss the statistics of this trace 
through its distribution function. 

Point (i)  (corresponding to an annealed approximation in disordered spin problems) 
has been initiated in the review paper of Ishii (1973) but has not been extensively used 
since. Moreover, the ‘replica trick’ (point (i i))  has very seldom been used in actual 
calculations in the context of random matrices (see Kirkman and Pendry 1984). 

The first aim of this letter is to develop point ( i )  for the study of some products 
of random matrices providing both rigorous upper bounds and approximations of the 
Lyapounov exponents ( L E ) .  As a test of the efficiency of these methods, we have 
considered the one-dimensional discretised localisation problem (Halperin 1965, Thou- 
less 1972, 1974, Ishii 1973, Derrida and Gardner 1984). For this problem, we give an 
upper bound on the LE which reproduces the exactly known U’/’  scaling behaviour at 
band edge. 

More generally, we have considered the n x n random matrices associated with the 
discretisation of the I D  differential equation 

where i+h(“) is the nth derivative of I,!I and E ( X )  a centred white noise of variance U. 
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We obtain the following bound on the largest LE when (+ + 0: 

This 1/(2n - 1 )  scaling behaviour can also be predicted for instance using a renormalisa- 
tion argument (Bouchaud and Le Doussal 1986), while the amplitude is unknown 
(except for n = 2). A numerical analysis furthermore indicates that the upper bound 
(2) reproduces the exact amplitude in the limit n -$CO. 

We finally turn to points (i i)  and (iii) for the one-dimensional localisation problem 
and develop a simple method to calculate the replica moments for low disorder, 
allowing us in particular to apply the 'replica trick' even at the anomalous band centre 
(Kappus and Wegner 1981). 

Let us consider n x n matrices M (  E )  depending on a random parameter E of mean 
value p and variance cr. One is interested in the real part of the Lyapounov exponent 
of the product n M(EO 

N 
M ( E , )  n M ( E , )  

N + x  2 N  ( 3 )  

where the angle bracket denotes an average over the realisations of the noise (the 
are independent). 

one has ( n  = 2) 
For the example of the discretised I D  Schrodinger equation in a random potential, 

Consider now the linear mapping operating in the space of n x n matrices: 

q , : u + q , ( u ) =  M ( E , ) U M + ( E , ) .  ( 5 )  

This transformation can be represented by the n2 x n2 matrix qE, = M ( E , )  0 M (  E , )  where 
0 denotes the usual tensorial product. A can be rewritten in term of qE, :  

Using the convexity of the logarithm, one can give an upper bound on A :  

where A,,, is the largest eigenvalue of the averaged n 2 x  n 2  matrix ( c p c , ) =  
( M ( E ) O M ( E ) ) .  (The last equality in ( 7 )  holds provided U,,> has a component in the 
eigenspace corresponding to A,,, , which is the generic case.) 

The bound (7) thus amounts to replacing the original disordered problem by an 
effective pure one: in this sense, it can be called an annealed method. Note however 
that the dimension of the corresponding matrices has been increased from n x n to 
n 2  x n2 ,  
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For the localisation problem (4), one has to compute the largest eigenvalue of the 
following 4 x 4 matrix: 

whose characteristic polynomial is 

x[-x’+ ( ( r + p 2 - 4 p ) x 2 +  (3e+p2 - 4 p ) x + 2 a ]  = 0 (9) 

where A = 1 + x. 
From (9), we obtain the following results. 
( i )  At band edge ( p  = 0 or 4) the LE A ( p  = 0, e) is bounded from above by 

2-2/3 e 1 / 3 -  - 0 . 6 3 ~ ” ~ ,  to be compared with the exact result 0.289.. . e1l3 (Derrida and 
Gardner 1984). 

given by (9) 
depends, for small U, on the scaling variable as is the case for the exact result. 
This bound is plotted in figure 1 together with the result of Derrida and Gardner. As 
expected, these two curves are very close far from the critical value 

(ii) In the vicinity of the band edge, the upper bound on 

= 0. 
(iii) Away from the band edge, (9) leads to 

which (see equation (14) below) is just twice the exact value known from weak disorder 
expansions (forgetting the values of p where an anomaly arises (Kappus and Wegner 
1981): p = 2( 1 +cos 7~ n l m ) ) .  (In figure 1, we also give numerical results concerning 
the imaginary noise case, for which the bound is surprisingly nearly exact in a wide 
range of p/e2” . )  

-2 -1 0 1 
- p  102” 

Figure 1. The ratio A / u ” ~  as a function of the scaling variable P / u * ’ ~ ,  near the band 
edge for small U. Full curve: upper bound; broken curve: imaginary noise, dotted curve: 
real noise. 
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Let us also mention that these bounds can be improved using a method detailed 
in another paper on the example of ZD spin systems (Georges er a1 1986). It is based 
on the following trick: let f( E )  be an arbitrary positive function of E ;  one has 

(In Trcp,)S(In l / f )+In( fTr  cp,). 

One can now optimise the bound by minimising functionally the right-hand side with 
respect to f: 

At the band edge ( p  -f 0) and for U + 0, it can be seen that the minimum is obtained 
for 

b = 0.665 

which leads to the upper bound A G 0.435~"~. 
This can also be systematically done in the vicinity of the band edge, leading to a 

function of p/a2 I3  lying halfway between the two curves of figure 1. 
Let us now turn to problem described by (1) for arbitrary n, with a zero mean value 

for E ( x ) .  The discretised version of (1) is (up to irrelevant terms in the weak noise 
limit) 

VI,, = M,V, 

where M ,  is the n x n matrix 

and VI = (A"-'$,, . . . , A'$,); A'  is the finite difference operator and (E ,& , )  = U&,. 

The average mapping (cp,,) is now represented by the n 2  x n 2  matrix (M,@ M,) 
whose characteristic polynomial can be evaluated using the algebra of the following 
n x n matrices: 

( A k ) t ,  = 8 r j - k  1 s i, j ,  k s n. 

The rules of this algebra are given by 

&Ap = A k + p  i f k + p G n  

= O  if not. 

This allows us to compute the matrix ln(l,~-A(cp)) and the characteristic polynomial 
is obtained by using the formula det M = exp Tr In M. Finally, it turns out that the 
largest root A,,, of this polynomial of degree n2 satisfies the following equation: 

The highest pole in (1 - A )  and its residue can easily be extracted from this series, 
and this leads to the bound (2) when a+O. The 1 / ( 2 n - l )  exponent is the correct 
one, as can be intuitively understood by noting that the tensorial product in (6) acts 
as a first step of a block renormalisation analysis. 

We have numerically studied the relevance of this bound: the ratio of the simulated 
LE on the 'annealed bound' is plotted in figure 2 as a function of n. 
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Figure 2. The ratio of the numerically computed LE on the annealed bound (2) as a function 
of the size of the matrix n. 

This suggests that (2) might be the exact analytical expression of A ( a + O )  in the 
limit n+w.  The exact prefactor of would require one to solve a partial 
differential equation of n - 1 variables generalising the simple differential equation 
(32) of Derrida and Gardner (1984). 

The above bound can in fact be seen as the second replica moment of Tr rI M (  . s i ) .  
More generally, in order to obtain information on the entire probability distribution 
of Tr rI M(.s i ) ,  it is possible to study 

N 

N 

one has to estimate the highest eigenvalues Aq of a 2' x 2' matrix (AI:'), which can 
in fact be reduced to a ( q  + 1) x ( q  + 1) matrix using symmetry properties (Pendry 1982). 

Actual calculations can be performed in the weak disorder limit within the 
framework of standard perturbation theory. This method has been applied by Kirkman 
and Pendry (1984) to study analytically the moments of an analogous quantity, namely 
the transmission coefficient, away from the band centre ( p  = 2) where the perturbation 
theory becomes degenerate and where only a semi-numerical treatment of the diagonali- 
sation problem was performed. 

Let us notice that for the moments of Tr M, one has a nice interpretation in terms 
of tensorial products of q f spins, which greatly simplifies actual calculations and 
allows a complete analytical treatment of the degenerate case (band centre). Denoting 
by S the total spin operator, one has, in every eigenspace of S,, 

and 

for2cos 8 = 2 - p # 0  
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For p # 2 ,  L(q, N )  can be evaluated for any finite N and analytically continued to 
any real q. This allows us to discuss the influence of the lattice in the metallic (finite-size) 
regime and will be addressed in a subsequent work. 

In the thermodynamic limit N + 00, one obtains 
U 

max { ( S ( S  + 1)) - 3 m 2 }  = A( q + ; q 2 )  for q even (14) 
/ m l = S  

p ( 4 -  p )  S = q / 2 , q / 2 - 1 .  ... L(q,  a) = 

allowing one to analytically continue for any real q the expression of the average 
modulus of the trace (In MIq), showing that the distribution of this quantity is purely 
log-normal with LE A = u / 2 p ( 4 -  p ) .  Analogous results have first been obtained by 
Melnikov (1981a) in the context of the random phase model (Anderson et a1 1980) 
and also by Kirkman and Pendry (1984). 

In the interesting band centre case ( p  = 2 ) ,  the spectrum of operator (13)  for an 
integer q is given by the roots of two sets of polynomials P",X) and P i ( X ) ,  correspond- 
ing to the representation of total spin S (running from 0 (or f )  to q / 2 ,  the maximally 
symmetrical representation). These P$b obey the same recursion relations with different 
initial conditions: 

(15a) Q F ( X )  = (as,,, - X ) Q F - ' ( X )  - C i + m  C ; - m + 2 Q Y 4 ( X )  

asm = S(S + 1) - 3 m 2  

Pg = QZ 

with 

and, for integer S, 

Q i S - ' ( x )  = 1 Q i S ( X )  = as.-s - x 
(156) 

p i  = Q Z - '  
while for half-integer S, 

Q i S - ' ( X )  = 1 QSS"(X)  = u S , - S + ~  - X 

pg = p i  = Q Z - '  QSS- ' (X)  = 1 Q i s ( X )  = uS,-S - X .  ( 1 5 ~ )  

The recursion relation naturally closes for q integer and the analytic continuation 
simply corresponds to the iteration of (15a)  ad injnitum. This introduces spurious 
roots which turn out to be always smaller than the natural one. 

Taking the thermodynamic limit amounts to selecting the largest root which is then 
easy to follow for real q, as seen in figure 3 which represents L(q,  a)/q at the band 
centre. This figure calls for three remarks. 

(a) The q+O limit gives the exact Kappus-Wegner value of the LE as will be 
explained below. Thus no difficulty arises when taking the thermodynamic limit before 
the q = 0 limit. This is true for all energies within the band, and is due to the fact that 
eigenvalues do not accumulate in this limit (see figure 3). 

(b) Melnikov (1981b), by studying a simplified version of the model, has obtained 
the correct asymptotic ( q  + 00) slope of L( q ) /  q. 

(c) For negative q, L ( q ) / q  does not seem to exhibit any peculiarities, such as the 
annulation of L ( - 2 ) ,  as suggested by Melnikov (1981b). 

One can obtain the exact value for the LE A by developing the recursion (15a) for 
small q. The A term turns out to be the limiting ratio of two sequences satisfying 

U,+:! = -12n2u,+, - n ( 2 n  - 1 ) 2 ( n  - l)u,  ( 1 6 ~ )  
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Figure 3. L(q)/q for the band centre case. Plain lines: the roots of polynomials Po and 
Pb as functions of q. The value of L ( q ) / q  is the largest root for a given q (note the 
occurrence of spurious roots). Chain curve: Melnikov's estimation; dotted line: continu- 
ation to the case p = 2 of the result valid only for p # 2 (without anomaly) for the modulus 
of the trace. 

This ratio converges extremely rapidly towards the exact value A = 0,1142 (Derrida 
and Gardner 1984). Furthermore, a generating function treatment of (16a) allows us 
to exactly obtain 

111-R A =- - 
8 12-R 

with 

and 

I(a, b, e )  = tb-'(l - f)'-.-'( 1 -;)-" dt. Id 
The complete distribution law for the band centre, which is no longer log-normal, 
can, in principle, be reconstructed from the knowledge of L( q )  in the thermodynamic 
limit. 

In the case p = 0 (band edge), no perturbation theory has yet been applied. We 
have nonetheless shown that for q integer 2 2 ,  the u1I3 behaviour always holds for 
weak disorder. The q = 2 and 4 replica moments yield 

A - 1  2'13 421/3 
4=- - 
qa'/' 2 ' 4 

and a linear extrapolation gives A = 0 . 3 9 ~ ~ ' / ~  while the exact value is 0 . 2 8 9 ~ ' / ~ .  If 
however one includes the third moment ( q  = 3) (Tr(II:, Mi)3) ,  one obtains the inter- 
mediate value (12)'13/3 and obtains A =0.2830'/~,  again very close to the true value. 
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Let us summarise the results contained in this letter. They include 
(i) a systematic way of obtaining rigorous upper bounds on the LE of products of 

random matrices, 
(ii) an upper bound on the LE of the first problem (i) ,  leading to a conjecture on 

its exact behaviour in the limit n +a, and 
(iii) a study of the moments of Tr II M in the infinite-size limit showing that the 

statistics at the band centre is far more complicated than the log-normal distribution 
holding within the band. 

Similar considerations have led us to improvements of the annealed approaches 
for ZD disordered spin systems (Georges et a1 1986), which provide approximations 
of the critical lines in good agreement with numerical results. Let us emphasise that 
these methods apply beyond the weak disorder limit and can also be used in the case 
of complex random matrices. 

The evolution of the statistics with respect to the size of the sample will be the 
object of a subsequent publication. 

We thank B Derrida and R Rammal for their encouragment. 
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